


3.6 The Mean Value Theorem 
for Derivatives
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Problem Introduction (L Theorem)

Geometrical fact:
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Fact: Rolle
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(1) If condition is not enough ,then the result may be wrong.
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Check the rightness of the Rolle Theorem.
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5Prove 5 1 0 has one and only one less than 1 and positive root.x x  
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Theorem of the Mean Value Theorem for Derivatives

Th A: Mean Value Theorem for Derivatives
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The Mean Value Theorem for Derivatives

(the point-slope form)   
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Theorem

Theorem B : Method I

If ( ) is an antiderivative of ( ) on the interval F x f x I

Then any antiderivative of 𝑓 𝑥 on the interval 𝐼 can be expressed as

,𝐶 is any constant.

So 
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If ( ) is another antiderivative of ( ) thenG x f x ，
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The function whose derivative is always zero must be a constant
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Theorem B (Method II, in textbook!)

If 𝐹′ 𝑥 = 𝐺′ 𝑥 for all 𝑥 in  𝑎,  𝑏 , then there is a constant 𝐶 such that 

𝐹 𝑥 = 𝐺 𝑥 + 𝐶 for all 𝑥 in  𝑎,  𝑏 .

Let 𝐻 𝑥 = 𝐹 𝑥 − 𝐺 𝑥 . Then 𝐻′ 𝑥 = 𝐹′ 𝑥 − 𝐺′ 𝑥 = 0 for all 𝑥 in 𝑎, 𝑏 .

Choose 𝑥1, as some (fixed) point in 𝑎, 𝑏 ,and let 𝑥 be any other point there.

The function 𝐻 satisfies the hypotheses of the Mean Value Theorem on 

the closed interval with end points 𝑥1 and 𝑥.

∃𝑐 between 𝑥1 and 𝑥 s.t. 𝐻 𝑥 − 𝐻 𝑥1 = 𝐻′ 𝑐 𝑥 − 𝑥1 and 𝐻′ 𝑐 = 0

Therefore, 𝐻 𝑥 − 𝐻 𝑥1 = 0, Namely, 𝐻 𝑥 = 𝐻 𝑥1 for all 𝑥 in 𝑎, 𝑏 .

Since 𝐻 𝑥 = 𝐹 𝑥 − 𝐺 𝑥 , Namely, F 𝑥 − 𝐺 𝑥 = 𝐻 𝑥1 .

Let 𝐶 = 𝐻 𝑥1 , and we have the conclution 𝐹 𝑥 = 𝐺 𝑥 + 𝐶.



Example 1

Let 𝑓 𝑥 = 𝑥3 − 𝑥2 − 𝑥 + 1 on −1,2 . Find all numbers 𝑐
satisfying the conclusion to the Mean Value Theorem.

We find 𝑓′ 𝑥 = 3𝑥2 − 2𝑥 − 1

and 
𝑓 2 −𝑓 −1

2− −1
=

3−0

3
= 1

Therefore, 3𝑐2 − 2𝑐 − 1=1

Namely, 3𝑐2 − 2𝑐 − 2 = 0

By the Quadretic Formula, there are two solutions,

𝑐 =  2 ± 4 + 24 6, namely, 𝑐 =  1 ± 7 3

𝑐1 ≈ −0.55, 𝑐2 ≈ 1.22, both numbers are in the interval −1,2 .



Example 2

By Mean Value Theorem for Derivatives, we have
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Example 3

Prove that ln(1 ) ,  when 0.
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By Mean Value Theorem for Derivative , we have
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Summary of the Mean Value Theorem for Derivatives
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Questions and Answers

Prove arcsin arccos ( 1 1).
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Questions and Answers

   Find  for 2  on 1,4 .c f x x

1
( )f x

x
  and

(4) (1) 4 2 2

4 1 3 3

f f 
 


Thus, we must have

1 2
,  (1,4)

3
c

c
 

The single solution is
9

.
4

c 



The Mean Value Theorem 

for Derivatives
…… ……

…… ……

…… ……

…… ……

…… ……

…… ……

…… ……

…… ……

…… ……

…… ……

…… ……

…… ……


