3.6 The Mean Value Theorem for Derivatives

Lecturer: Xue Deng

Problem Introduction

\# Geometrical fact:

Horizontal Tangent line

$$
f^{\prime}(\xi)=0
$$

$$
f^{\prime}(\xi)=0
$$

$$
f^{\prime}(\xi)=?
$$

Problem Introduction (L Theorem)

\# Geometrical fact:

Horizontal Tangent line

$$
f^{\prime}(\xi)=0
$$

Fact: Rolle

Lemma: Rolle Theorem

If $\boldsymbol{f}(\boldsymbol{x}): \quad$ (1) $\quad f(x) \in C[a, b]$;
(2) $f(x)$ is derivative in (a, b);
(3) $f(a)=f(b)$,

$$
\exists \xi \in(a, b) \text { such that } \boldsymbol{f}^{\prime}(\xi)=\mathbf{0}
$$

$f(x)=x^{2}-2 x-3=(x-3)(x+1)$.
$f(x) \in C[-1,3]$, derivative in $(-1,3)$, and $f(-1)=f(3)=0$, $f^{\prime}(x)=2(x-1)$, take $\xi=1,(1 \in(-1,3)) f^{\prime}(\xi)=0$.

Rolle

If $\boldsymbol{f}(\boldsymbol{x}): \quad$ (1) $\quad f(x) \in C[a, b] ;$

(2) $\quad f(x)$ is derivative in (a, b);
(3) $f(a)=f(b)$,
(1) If condition is not enough , then the result may be wrong.

$f(x)=\left\{\begin{array}{c}x, \quad 0 \leq x<1 \\ 0, \quad x=1\end{array}\right.$

$f(x)=|x|, x \in[-1,1]$

$$
f(x)=x, x \in[0,1]
$$

Examples

As for $f(x)=x^{3}+4 x^{2}-7 x-10$, on the $[-1,2]$
Check the rightness of the Rolle Theorem.
(1) Conditions: $f(x)$ in continuous on $[-1,2]$, derivartive in $(-1,2)$,

$$
f(-1)=0=f(2)
$$

(2) Result is right. Equation $f^{\prime}(x)=0$,

Namely, $3 x^{2}+8 x-7=0$ has real root.

$$
x_{1}=\frac{1}{3}(-4-\sqrt{37}), \quad x_{2}=\frac{1}{3}(-4+\sqrt{37}) \quad \text { and } \quad x_{2} \in(-1,2) .
$$

Rolle TH: The existence of $\boldsymbol{\xi}$, It is not necessary to know the value of $\boldsymbol{\xi}$.

Examples

?
Prove $x^{5}-5 x+1=0$ has one and only one less than 1 and positive root.
(1) Existence

$$
\text { Let } f(x)=x^{5}-5 x+1, \text { then } f(x) \text { is continuous on }[0,1]
$$

$$
\text { and } f(0)=1, \quad f(1)=-3 . \quad \text { By Zero Theorem }
$$

$$
\exists x_{0} \in(0,1), \text { such that } f\left(x_{0}\right)=0 .
$$

So has one and only one less than 1 and positive root.

Examples

Prove $x^{5}-5 x+1=0$ has one and only one less than 1 and positive root.
(2) Uniqueness

Let another $x_{1} \in(0,1), x_{1} \neq x_{0}$, such that $\boldsymbol{f}\left(\boldsymbol{x}_{1}\right)=0$.
$\because f(x)$ satisfying Rolle Theorem between x_{0} and x_{1}.
$\therefore \exists \xi\left(x_{0}, x_{1}\right), f^{\prime}(\xi)=0$.
but $f^{\prime}(x)=5\left(x^{4}-1\right)<\mathbf{0}, \quad(x \in(0,1))$ Contradict!
\therefore unique real root.
Result: Between the two real roots of $\mathrm{f}(\mathrm{x})=0$, there exist at least one root for $f^{\prime}(x)=0$

Theorem of the Mean Value Theorem for Derivatives

Th A: Mean Value Theorem for Derivatives

$$
\begin{aligned}
& f \in C[a, b], \quad f^{\prime}(x) \text { exists in }(a, b) \\
\Rightarrow & \exists \xi \in(a, b) \text { s.t. } f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

$$
\begin{aligned}
& g(x)-f(a)=\frac{f(b)-f(a)}{b-a} \cdot(x-a) \text { (the point-slope form) } \\
& \Rightarrow s(x)=f(x)-g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a} \cdot(x-a) \\
& s(a)=s(b)=0 \text { (at the two end points) } \\
& \exists x \in(a, b) \Rightarrow s^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a} \\
& \Rightarrow s^{\prime}(\xi)=f^{\prime}(\xi)-\frac{f(b)-f(a)}{b-a}=0 \Rightarrow f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

Theorem B: Method I

If $F(x)$ is an antiderivative of $f(x)$ on the interval I
Then any antiderivative of $f(x)$ on the interval I can be expressed as

$$
\boldsymbol{F}(\boldsymbol{x})+\boldsymbol{C} \quad, C \text { is any constant. }
$$

If $G(x)$ is another antiderivative of $f(x)$, then $\boldsymbol{G}^{\prime}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$,
We need to proof: $\quad \boldsymbol{G}(x)-\boldsymbol{F}(x) \equiv$ constant
$\boldsymbol{F}^{\prime}(x)=f(x)$, and $[G(x)-F(x)]^{\prime}=G^{\prime}(x)-F^{\prime}(x)=f(x)-f(x) \equiv \mathbf{0}$
The function whose derivative is always zero must be a constant
So $G(x)-F(x)=C_{0} \Rightarrow G(x)=F(x)+C_{0}$ any constant

Theorem B (Method II, in textbook!)

?
If $F^{\prime}(x)=G^{\prime}(x)$ for all x in (a, b), then there is a constant C such that $F(x)=G(x)+C$ for all x in (a, b).

Let $H(x)=F(x)-G(x)$. Then $H^{\prime}(x)=F^{\prime}(x)-G^{\prime}(x)=0$ for all x in (a, b). Choose x_{1}, as some (fixed) point in (a, b), and let x be any other point there.

The function H satisfies the hypotheses of the Mean Value Theorem on the closed interval with end points x_{1} and x.
$\exists c$ between x_{1} and x s.t. $H(x)-H\left(x_{1}\right)=H^{\prime}(c)\left(x-x_{1}\right) \quad$ and $H^{\prime}(c)=0$
Therefore, $H(x)-H\left(x_{1}\right)=0$, Namely, $H(x)=H\left(x_{1}\right)$ for all x in (a, b).
Since $H(x)=F(x)-G(x), \quad$ Namely, $F(x)-G(x)=H\left(x_{1}\right)$.
Let $C=H\left(x_{1}\right)$, and we have the conclution $F(x)=G(x)+C$.

Example 1

P Let $f(x)=x^{3}-x^{2}-x+1$ on $[-1,2]$. Find all numbers c satisfying the conclusion to the Mean Value Theorem.

We find $f^{\prime}(x)=3 x^{2}-2 x-1$
and $\frac{f(2)-f(-1)}{2-(-1)}=\frac{3-0}{3}=1$
Therefore, $3 c^{2}-2 c-1=1$
Namely, $3 c^{2}-2 c-2=0$
By the Quadretic Formula, there are two solutions,
$c=(2 \pm \sqrt{4+24}) / 6$, namely, $c=(1 \pm \sqrt{7}) / 3$
$c_{1} \approx-0.55, c_{2} \approx 1.22$, both numbers are in the interval $(-1,2)$.
$?$ Prove that $\arctan x_{2}-\arctan x_{1} \leq x_{2}-x_{1}, \quad\left(x_{1}<x_{2}\right)$.

Let $f(x)=\arctan x \quad$ on $\left[x_{1}, x_{2}\right]$
By Mean Value Theorem for Derivatives, we have
$\arctan x_{2}-\arctan x_{1}=\frac{1}{1+\xi^{2}}\left(x_{2}-x_{1}\right) \quad \xi \in\left(x_{1}, x_{2}\right)$,
$\because \frac{1}{1+\xi^{2}} \leq 1$,
$\therefore \arctan x_{2}-\arctan x_{1} \leq x_{2}-x_{1}$.

Example 3

Prove that $\frac{x}{1+x}<\ln (1+x)<x$, when $x>0$.
Let $f(x)=\ln (1+x), \quad[0, x]$ important idea
By Mean Value Theorem for Derivative, we have

$$
\therefore f(x)-f(0)=f^{\prime}(\xi)(x-0), \quad(0<\xi<x)
$$

$\because f(0)=0, f^{\prime}(x)=\frac{1}{1+x}$, we have $\ln (1+x)=\frac{x}{1+\xi}$,
By $0<\xi<x \Rightarrow 1<1+\xi<1+x \Rightarrow \frac{1}{1+x}<\frac{1}{1+\xi}<1$,
$\therefore \frac{x}{1+x}<\frac{x}{1+\xi}<x$, namely $\frac{x}{1+x}<\ln (1+x)<x$.

Summary of the Mean Value Theorem for Derivatives

Th $: f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a} \quad$ can be written in other forms: $\xi \in(a, b)$,
(i) $f(b)-f(a)=f^{\prime}(\xi)(b-a)$. When $a>b$ still holds.
(ii) $f(x+\Delta x)-f(x)=f^{\prime}(\xi) \Delta x,(x<\xi<\Delta x+x)$

$$
\text { (iii) } \Delta y=f^{\prime}(x+\theta \Delta x) \cdot \Delta x \quad(0<\theta<1) \text {. }
$$

Questions and Answers

2 Prove $\arcsin x+\arccos x=\frac{\pi}{2}(-1 \leq x \leq 1)$.

Let $f(0)=\arcsin (0+\arccos (0, \quad x \in[-1,1]$
$\because f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}+\left(-\frac{1}{\sqrt{1-x^{2}}}\right)=0 . \therefore f(x) \equiv C, \quad x \in[-1,1]$
$\because f(0)=\arcsin 0+\arccos 0=0+\frac{\pi}{2}=\frac{\pi}{2}$,
Namely, $C=\frac{\pi}{2} . \quad \therefore \arcsin x+\arccos x=\frac{\pi}{2}$.
Prove by yourself: $\arctan x+\operatorname{arccot} x=\frac{\pi}{2}, x \in(-\infty,+\infty)$.

Questions and Answers

Find c for $f(x)=2 \sqrt{x}$ on $[1,4]$

$$
f^{\prime}(x)=\frac{1}{\sqrt{x}} \text { and }
$$

$$
\frac{f(4)-f(1)}{4-1}=\frac{4-2}{3}=\frac{2}{3}
$$

Thus, we must have
$\frac{1}{\sqrt{c}}=\frac{2}{3}, c \in(1,4)$
The single solution is $c=\frac{9}{4}$.

The Mean Value Theorem for Derivatives

