

3.6 The Mean Value Theorem for Derivatives

Lecturer: Xue Deng

Problem Introduction

Problem Introduction (L Theorem)

Fact: Rolle

Rolle,(French)1652-1719

Rolle

If f(x): (1) $f(x) \in C[a,b]$; (2) f(x) is derivative in (a,b); (3) f(a) = f(b),

(1) If condition is not enough, then the result may be wrong.

Examples

Rolle TH: The existence of $\boldsymbol{\xi}$, It is not necessary to know the value of $\boldsymbol{\xi}$.

Examples

Prove $x^5 - 5x + 1 = 0$ has one and only one less than 1 and positive root.

Let $f(x) = x^5 - 5x + 1$, then f(x) is continuous on [0,1],

and f(0) = 1, f(1) = -3. By Zero Theorem

 $\exists x_0 \in (0,1)$, such that $f(x_0) = 0$.

So has one and only one less than 1 and positive root.

Examples

Prove $x^5 - 5x + 1 = 0$ has one and only one less than 1 and positive root.

(2) Uniqueness

Let another $x_1 \in (0,1), x_1 \neq x_0$, such that $f(x_1) = 0$.

 $\therefore f(x)$ satisfying Rolle Theorem between x_0 and x_1 .

$$\therefore \exists \xi (x_0, x_1), f'(\xi) = 0.$$

but $f'(x) = 5(x^4 - 1) < 0$, $(x \in (0, 1))$ Contradict!

∴unique real root.

Result: Between the two real roots of f(x)=0, there exist at least one root for f'(x)=0

Theorem of the Mean Value Theorem for Derivatives

Th A: Mean Value Theorem for Derivatives

$$f \in C[a,b], f'(x)$$
 exists in (a,b)
 $\Rightarrow \exists \xi \in (a,b)$ s.t. $f'(\xi) = \frac{f(b) - f(a)}{b-a}$

y
$$f(a) \neq f(b)$$

C $y = f(x)$
A ξ_1
 ξ_2 b x

The Mean Value Theorem for Derivatives

Theorem

Theorem B : Method I

If F(x) is an antiderivative of f(x) on the interval I

Then any antiderivative of f(x) on the interval *I* can be expressed as F(x) + C, *C* is any constant.

If G(x) is another antiderivative of f(x), then G'(x) = f(x), We need to proof : $G(x) - F(x) \equiv \text{constant}$

F'(x) = f(x), and $[G(x) - F(x)] = G'(x) - F'(x) = f(x) - f(x) \equiv 0$

The function whose derivative is always zero must be a constant

So
$$G(x) - F(x) = C_0 \implies G(x) = F(x) + C_0$$

any constant

Theorem B (Method II, in textbook!)

If F'(x) = G'(x) for all x in (a, b), then there is a constant C such that F(x) = G(x) + C for all x in (a, b).

Let H(x) = F(x) - G(x). Then H'(x) = F'(x) - G'(x) = 0 for all x in (a, b).

Choose x_1 , as some (fixed) point in (a, b), and let x be any other point there.

The function *H* satisfies the hypotheses of the Mean Value Theorem on the closed interval with end points x_1 and x.

 $\exists c \text{ between } x_1 \text{ and } x \text{ s.t. } H(x) - H(x_1) = H'(c)(x - x_1) \text{ and } H'(c) = 0$

Therefore, $H(x) - H(x_1) = 0$, Namely, $H(x) = H(x_1)$ for all x in (a, b).

Since H(x) = F(x) - G(x), Namely, $F(x) - G(x) = H(x_1)$.

Let $C = H(x_1)$, and we have the conclution F(x) = G(x) + C.

Example 1

Let $f(x) = x^3 - x^2 - x + 1$ on [-1,2]. Find all numbers *c* satisfying the conclusion to the Mean Value Theorem.

We find
$$f'(x) = 3x^2 - 2x - 1$$

and
$$\frac{f(2)-f(-1)}{2-(-1)} = \frac{3-0}{3} = 1$$

Therefore,
$$3c^2 - 2c - 1 = 1$$

Namely,
$$3c^2 - 2c - 2 = 0$$

By the Quadretic Formula, there are two solutions,

$$c = (2 \pm \sqrt{4 + 24})/6$$
, namely, $c = (1 \pm \sqrt{7})/3$
 $c_1 \approx -0.55, c_2 \approx 1.22$, both numbers are in the interval (-1,2).

Example 2

$$f(b) - f(a) = f'(\xi)(b - a) \quad \xi \in (a, b)$$

Prove that $\arctan x_2 - \arctan x_1 \le x_2 - x_1$, $(x_1 < x_2)$.

$$Let f(x) = \arctan x \quad on [x_1, x_2]$$

By Mean Value Theorem for Derivatives, we have

$$\arctan x_2 - \arctan x_1 = \frac{1}{1 + \xi^2} (x_2 - x_1) \qquad \xi \in (x_1, x_2),$$

$$::\frac{1}{1+\xi^2} \le 1,$$

$$\therefore \arctan x_2 - \arctan x_1 \le x_2 - x_1.$$

Example 3

Prove that
$$\frac{x}{1+x} < \ln(1+x) < x$$
, when $x > 0$.
Let $f(x) = \ln(1+x)$, $[0, x]$ important idea

By Mean Value Theorem for Derivative, we have

$$\therefore f(x) - f(0) = f'(\xi)(x - 0), \quad (0 < \xi < x)$$

$$\therefore f(0) = 0, f'(x) = \frac{1}{1+x}, \text{ we have } \ln(1+x) = \frac{x}{1+\xi},$$

By $0 < \xi < x \Rightarrow 1 < 1+\xi < 1+x \Rightarrow \frac{1}{1+x} < \frac{1}{1+\xi} < 1,$

 $\therefore \frac{x}{1+x} < \frac{x}{1+\xi} < x, \text{ namely } \frac{x}{1+x} < \ln(1+x) < x.$

Summary of the Mean Value Theorem for Derivatives

Th: $f'(\xi) = \frac{f(b) - f(a)}{b - a}$ can be written in other forms: $\xi \in (a, b)$,

(i) $f(b) - f(a) = f'(\xi)(b - a)$. When a > b still holds.

(ii) $f(x + \Delta x) - f(x) = f'(\xi)\Delta x, \ (x < \xi < \Delta x + x)$

(iii) $\Delta y = f'(x + \theta \Delta x) \cdot \Delta x$ $(0 < \theta < 1).$

accurate expression of increment Δy .

Questions and Answers

Prove
$$\arcsin x + \arccos x = \frac{\pi}{2} (-1 \le x \le 1).$$

$$\therefore f'(x) = \arcsin (1 + \arccos (1), x \in [-1, 1])$$

$$\therefore f'(x) = \frac{1}{\sqrt{1 - x^2}} + (-\frac{1}{\sqrt{1 - x^2}}) = 0. \therefore f(x) \equiv C, x \in [-1, 1]$$

$$\therefore f(0) = \arcsin 0 + \arccos 0 = 0 + \frac{\pi}{2} = \frac{\pi}{2},$$
Namely, $C = \frac{\pi}{2}$. $\therefore \arcsin x + \arccos x = \frac{\pi}{2}$.

Prove by yourself: $\arctan x + \operatorname{arccot} x = \frac{\pi}{2}, x \in (-\infty, +\infty).$

Questions and Answers

Find c for
$$f(x) = 2\sqrt{x}$$
 on [1,4].

$$f'(x) = \frac{1}{\sqrt{x}} \quad \text{and}$$

$$\frac{f(4) - f(1)}{4 - 1} = \frac{4 - 2}{3} = \frac{2}{3}$$
 Thus, we must have

$$\frac{1}{\sqrt{c}} = \frac{2}{3}, \ c \in (1,4)$$

The single solution is $c = \frac{9}{4}$.

The Mean Value Theorem for Derivatives

